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FIXED POINTS ON TRANSVERSAL EDGES
SPACES

Milan R. Tasković∗

Abstract. In this paper we formulate a new structure of
spaces which we call it edges (upper or lower) transversal spaces.
Also, in this sense, we describe a class of conditions sufficient for
the existence of a fixed point on edges (upper or lower) transversal
spaces.

1. Introduction and history

The possibility of defining such notions as limit and continuity in an
arbitrary set is an idea which undoubtedly was first put forward by M. Fréchet
in 1904, and developed by him in his famous doctoral dissertation 1905.

In this paper we introduce a new concept by name edges transversal
spaces as a nature extension of Fréchet’s spaces. In the second part, of this
paper, applications in the fixed point theory are considered.

In this sense, first, let (X, ρ) be a metric space and T a mapping of X
into itself. A metric space X is said to be T -orbitally complete iff every Cauchy
sequence which is contained in orbit O(x) = {x, Tx, T 2x, . . . } for some x ∈ X
converges in X.

In 1980 I have been proved the following result of fixed point on metric
spaces which has a best long of all known sufficiently conditions for the existing
of unique fixed point, cf. Tasković [2], [3] and [5]. This result generalizes a great
number of known results.
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In [2] I have been introduced the concept of a diametral ϕ-contraction
T of a metric space (X, ρ) into itself, i.e., there exists a function ϕ : R0

+ →
R0

+ := [0,+∞) satisfying(
∀t ∈ R+ := (0,+∞)

)(
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
such that

ρ[Tx, Ty] ≤ ϕ
(

diam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
for all x, y ∈ X, where diam denoted diameter.

In [2] Tasković has proved the following result: Let T be a diametral ϕ-
contraction on a T -orbitally complete metric space (X, ρ). If diam O(x) ∈ R0

+,
then T has a unique fixed point ξ ∈ X.

A brief first proof of this statement may be found in Tasković [2]. Also
some brief proofs for this we can see in Tasković [3], [4] and [5]. For some
results in connection with this see Ohta-Nikaido [9].

2. Upper edges spaces

Let X be a nonempty set. The function ρ : X × X → [a, b] for a < b
(a, b ∈ R0

+ := [0,+∞)) is called an upper edges transverse on X (or upper
transversal) iff: ρ[x, y] = ρ[y, x], ρ[x, y] = a if and only if x = y, and if there
is a function ψ : [a, b]2 → [a, b] such that

ρ[x, y] ≤ max
{
ρ[x, z], ρ[z, y], ψ

(
ρ[x, z], ρ[z, y]

)}
(A)

for all x, y, z ∈ X.
An upper edges transversal space (or upper edges space) is a set X

together with a given upper edges transverse on X. The function ψ : [a, b]2 →
[a, b] in (A) is called upper bisection function.

From (A) it follows by induction that there is a function G : [a, b]n →
[a, b] for a < b such that

ρ[x0, xn] ≤

≤ max
{
ρ[x0, x1], . . . , ρ[xn−1, xn], G

(
ρ[x0, x1], . . . , ρ[xn−1, xn]

)}
for all x0, x1, . . . , xn ∈ X and for arbitrary fixed integer n ≥ 2.

Example 1. (Metric spaces). A fundamental first example of upper edges
space is a metric space. Indeed, if (X, d) is a metric space, then for the upper bisection
function ψ(r, t) = r + t we have the following upper edges transverse ρ : X ×X →
[a, b] ⊂ R0

+ for a < b defined by

ρ[x, y] =
(b− a)d(x, y)
1 + d(x, y)

+ a
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for all x, y ∈ X . Thus (X, ρ) is an example of an upper edges transversal space. In
general, every metric space is an example of an upper edges transversal space.

Example 2. (The extended real line R). The function f defined in R by
f(x) = x/(1 + |x|) is a bijection on R on the open interval (−1, 1) ⊂ R, and the
inverse mapping g being defined by g(x) = x/(1 − |x|) for |x| < 1. Let R be the
set which is the union of R and two new elements written +∞ and −∞ (points at
infinity); then we extend f to a bijection of R onto [−1, 1] by putting f(+∞) = 1,
f(−∞) = −1, and write again g for the inverse mapping.

We can apply this process described to define R as an upper edges transversal
space by putting for the upper edges transverse ρ : R× R→ [0, 2] that is

ρ[x, y] =
∣∣∣∣ x

1 + |x| −
y

1 + |y|

∣∣∣∣
for all x, y ∈ R. (We notice that for x ≥ 0 is ρ[+∞, x] = 1/(1 + |x|), and for x ≤ 0
that is ρ[−∞, x] = 1/(1 + |x|)).

For any nonempty set Y in the upper edges transversal space X, the
diameter of Y is defined as

diam(Y ) := sup
{
ρ[x, y] : x, y ∈ Y

}
;

it is a real number in [a, b], A ⊂ B implies diam(A) ≤ diam(B). The relation
diam(Y ) = a holds if and only if Y is a one point set.

Elements of an upper edges transversal space will usually be called
points. Given an upper edges transversal space (X, ρ), with the bisection
function g : [a, b]2 → [a, b] and a point z ∈ X, the open ball of center z and
radius r > 0 is the set

g
(
B(z, r)

)
=
{
x ∈ X : ρ[z, x] < a+ r

}
.

The convergence xn → x as n→∞ in the upper edges transversal space
(X, ρ) means that

ρ[xn, x]→ a as n→∞,
or equivalently, for every ε > 0 there exist on integer n0 such that the relation
n ≥ n0 implies ρ[xn, x] < a+ ε.

The sequence {xn}n∈N in the upper edges transversal space (X, ρ) is
called transversal sequence (or upper Cauchy sequence) iff for every ε > 0
there is an n0 = n0(ε) such that

ρ[xn, xm] < a+ ε for all n,m ≥ n0.

Let (X, ρ) be an upper edges transversal space and T : X → X. We
notice, from Tasković [7], that a sequence of iterates {T n(x)}n∈N in X is said
to be transversal sequence if and only if

lim
n→∞

(
diam

{
T k(x) : k ≥ n

})
= a.
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In this sense, an upper edges transversal space is called upper com-
plete iff every transversal sequence converges. Also, a space (X, ρ) is said
to be upper orbitally complete (or upper T -orbitally complete) iff every
transversal sequence which is contained in O(x) := {x, Tx, T 2x, . . . } for some
x ∈ X converges in X.

For further facts on upper edges transversal spaces see: Tasković [7].
A function f mapping X into the reals is T -orbitally lower semicon-

tinuous at p ∈ X if {xn}n∈N is a sequence in O(x) and xn → p (n → ∞)
implies that f(p) ≤ lim inf f(xn).

Let (X, ρ) be an upper edges transversal space. A mapping T : X → X
is said to be upper edges contraction if there exists an 0 ≤ λ < 1 such
that

ρ[T (x), T (y)] ≤ λρ[x, y] + a(1− λ)

for all points x, y ∈ X.
In addition, let (X, ρX ) and (Y, ρY ) be two upper edges transversal

spaces and T : X → Y . We notice, from Tasković [7], that T be upper edges
continuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such that the
relation

ρX [x0, x] < a+ δ implies ρY [T (x0), T (x)] < a+ ε.

A typical first example of an upper edges continuous mapping is the
upper edges contraction on the upper edges transversal space (X, ρ). For the
further facts on the upper edges continuous mappings see: Tasković [7].

We are now in a position to formulate the following statement, which
is roofing for a great number of known result on metric spaces in the fixed
point theory.

Theorem 2.1. Let T be a mapping of an upper edges transversal space
(X, ρ) into itself and let X be upper T -orbitally complete. Suppose that there
exists a function ϕ : [a, b]→ [a, b] satisfying(

∀t ∈ (a, b]
)(
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
(Iu)

such that

ρ[Tx, Ty] ≤ ϕ
(

diam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
(B)

for all x, y ∈ X. If x �→ diam O(x) or x �→ ρ[x, Tx] is T -orbitally lower semi-
continuous, then T has a unique fixed point ξ ∈ X and {T n(x)}n∈N converges
to ξ for every x ∈ X.

We begin the proof with the following lemma (as a well known lemma)
which is essential in the following context.
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Lemma 1. (Tasković [7]). Let the mapping ϕ : [a, b] → [a, b] ⊂ R0
+ for

a < b have the property (Iu). If the sequence (xn) of nonnegative real numbers
satisfies the condition

xn+1 ≤ ϕ(xn), n ∈ N,

then the sequence (xn) tends to a. The velocity of this convergence is not
necessarily geometrical.

A brief first proof of this statement may be found in: Tasković [7]. Other
brief proofs for this we can see in Tasković [1], [2] and [5].

Proof of Theorem 1. Let x be an arbitrary point in X. We can show
then that the sequence of iterates {T nx}n∈N is a transversal sequence. It is
easy to verify that the sequence {T nx}n∈N satisfies the following inequality

diam O(T n+1(x)) ≤ ϕ
(

diam O(T n(x)
)

for n ∈ N, and hence applying Lemma 1 to the sequence (diam O(Tn(x))
we obtain limn→∞ diam O(T n(x)) = a. This implies that {T n(x)}n∈N is a
transversal sequence in X and, by upper T -orbitally completeness, there is a
ξ ∈ X such that T n(x) → ξ (n → ∞). Since x �→ diam O(x) is T -orbitally
lower semicontinuous at ξ,

ρ[ξ, T ξ] ≤ diam O(ξ) ≤ lim inf
n→∞

(
diam O(T n(x))

)
= a;

thus Tξ = ξ, and we have shown that for each x ∈ X the sequence {T n(x)}n∈N

converges to a fixed point of T .
On the other hand, if x �→ ρ[x, Tx] is a T -orbitally lower semicontinuous

at ξ, we have

ρ[ξ, T ξ] ≤ lim inf
n→∞

ρ[T nx, Tn+1x] ≤ lim inf
n→∞

(
diam O(T n(x)

)
= a;

and thus again Tξ = ξ, i.e., we have again shown that for each x ∈ X the
sequence {T n(x)}n∈N converges to a fixed point of T .

We complete the proof by showing that T can have at most one fixed
point: for, if ξ �= η were two fixed points, then

a < ρ[ξ, η] = ρ[Tξ, Tη] ≤
≤ ϕ(diam{ξ, η, T ξ, Tη, T 2ξ, T 2η, . . . }) = ϕ(diam{ξ, η, ξ, η, . . . }) < ρ[ξ, η],

a contradiction. The proof is complete.
As immediate consequences of the preceding Theorem 1 we obtain di-

rectly the following interesting cases of (B):
(1) There exists a nondecreasing function ϕ : [a, b] → [a, b] ⊂ R0

+ for
a < b satisfying lim supz→t+0 ϕ(z) < t for every t ∈ (a, b] such that

ρ[Tx, Ty] ≤ ϕ
(

diam{x, y, Tx, Ty}
)
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for all x, y ∈ X.
(2) (Special affine case of condition (B) for ϕ(t) = αt+a(1−α)). There

exists a constant α ∈ [0, 1) such that for all x, y ∈ X the following inequality
holds

ρ[Tx, Ty] ≤ α diam{x, y, Tx, Ty}+ a(1− α),

i.e., equivalently to

ρ[Tx, Ty] ≤

≤ αmax
{
ρ[x, y], ρ[x, Tx], ρ[y, Ty], ρ[x, Ty], ρ[y, Tx]

}
+ a(1− α)

(3) There exists a nondecreasing function ϕ : [a, b] → [a, b] ⊂ R0
+ for

a < b satisfying lim supz→t+0 ϕ(z) < t for every t ∈ (a, b] such that

ρ[Tx, Ty] ≤ ϕ
(

diam
{
x, y, Tx, Ty, . . . , T kx, T ky

})
for an arbitrary fixed integer k ≥ 0 and for all x, y ∈ X.

(4) There exists an increasing mapping, i.e., xi ≤ yi (i = 1, . . . , 5)
implies f(x1, . . . , x5) ≤ f(y1, . . . , y5), f : [a, b]5 → [a, b] ⊂ R0

+ for a < b

satisfying lim supz→t+0 f(z, z, z, z, z) < t for every t ∈ (a, b] such that

ρ[Tx, Ty] ≤ f
(
ρ[x, y], ρ[x, Tx], ρ[y, Ty], ρ[x, Ty], ρ[y, Tx]

)
for all x, y ∈ X.

In connection with the preceding facts, we are now in a position to
formulate a localization of Theorem 1 in the following form.

Theorem 2.2. Let T be a mapping of an upper edges transversal space
(X, ρ) into itself and let X be upper T -orbitally complete. Suppose that there
exists a function ϕ : [a, b]→ [a, b] satisfying (Iu) such that

diam
{
Tx, T 2x, . . .

}
≤ ϕ

(
diam

{
x, Tx, T 2x, . . .

})
for every x ∈ X. If x �→ diam O(x) or x �→ ρ[x, Tx] is T -orbitally lower
semicontinuous, then T has a fixed point.

Proof of this statement is a totally analogous with the preceding proof
of Theorem 1, and thus we omit it.

3. Lower edges spaces

Let X be a nonempty set. The function ρ : X × X → [a, b] ⊂ R0
+ for

a < b is called a lower edges transverse on X (or lower transversal) iff:
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ρ[x, y] = ρ[y, x], ρ[x, y] = b if and only if x = y, and if there is a function
d : [a, b]2 → [a, b] such that

ρ[x, y] ≥ min
{
ρ[x, z], ρ[z, y], d

(
ρ[x, z], ρ[z, y]

)}
(M)

for all x, y, z ∈ X.
A lower edges transversal space (or lower edges space) is a set X

together with a given lower edges transverse on X. The function d : [a, b]2 →
[a, b] in (M) is called lower bisection function.

From (M) it follows by induction that there is a function D : [a, b]n →
[a, b] for a < b such that

ρ[x0, xn] ≥

≥ min
{
ρ[x0, x1], . . . , ρ[xn−1, xn],D

(
ρ[x0, x1], . . . , ρ[xn−1, xn]

)}
for all x0, x1, . . . , xn ∈ X and for arbitrary fixed integer n ≥ 2.

Example 3. (Metric spaces). A fundamental first example of lower edges
transversal space is a metric space. Indeed, if (X, q) is a metric space, then for the
lower bisection function d(r, t) = r + t we have the following lower edges transverse
ρ : X ×X → [a, b] ⊂ R0

+ for a < b defined by

ρ[x, y] =
(a− b)q[x, y]
1 + q[x, y]

+ b

for all x, y ∈ X . Thus (X, ρ) is an example of a lower edges transversal space. In
general, every metric space is an example of a lower edges transversal space.

Example 4. (Lower probabilistic spaces). A mapping F : R → R0
+ is called

a distribution function if it is nondecreasing, left-continuous with inf F = 0 and
supF = 1. We will denote by L the set of all distribution functions. We shall denote
the distribution function F(p, q) by Fp,q(x), whence Fp,q(x) will denote the value of
Fp,q at x ∈ R.

An example of lower edges transversal space is a lower probabilistic space
which is a nonempty set X together with the functions Fp,q(x) with the following
properties: Fp,q(x) = Fq,p(x), Fp,q(0) = 0,

Fp,q(x) = 1 for x > 0 if and only if p = q,

and if there is a nondecreasing function τ : [0, 1]2 → [0, 1] with property τ(t, t) ≥ t
for all t ∈ [0, 1] such that

Fp,q(x+ y) ≥ τ(Fp,r(x), Fr,q(y))(Nm)

for all p, q, r ∈ X and for all x, y ≥ 0. If we chosen a lower bisection function
d : [0, 1]2 → [0, 1] such that d = τ (from (Nm)), then we immediate obtain that
every lower probabilistic space, for ρ[p, q] = Fp,q(x) : X×X → [0, 1], is a lower edges
transversal space.
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For any nonempty set S in the lower edges transversal space X the
diameter of S is defined as

diam(S) := inf
{
ρ[x, y] : x, y ∈ S

}
;

it is a real number in [a, b], A ⊂ B implies diam(B) ≤ diam(A). The relation
diam(S) = b holds if and only if S is a one point set.

Elements of a lower edges transversal space will usually be called points.
Given a lower edges transversal space (X, ρ), with the bisection function d :
[a, b]2 → [a, b] and a point z ∈ X, the open ball of center z and radius r > 0
is the set

d
(
B(z, r)

)
=
{
x ∈ X : ρ[z, x] > b− r

}
.

The convergence xn → x as n→∞ in the lower edges transversal space
(X, ρ) means that

ρ[xn, x]→ b as n→∞,
or equivalently, for every ε > 0 there exist an integer n0 such that the relation
n ≥ n0 implies ρ[xn, x] > b− ε.

The sequence {xn}n∈N in the lower edges transversal space (X, ρ) is
called transversal sequence (or lower Cauchy sequence) iff for every ε > 0
there is an n0 = n0(ε) such that

ρ[xn, xm] > b− ε for all n,m ≥ n0.

Let (X, ρ) be a lower edges transversal space and T : X → X. We
notice, from Tasković [7], that a sequence of iterates {T n(x)}n∈N in X is said
to be transversal sequence if and only if

lim
n→∞

(
diam{T k(x) : k ≥ n}

)
= b.

In this sense, a lower edges transversal space is called lower complete
iff every transversal sequence converges.

Also, a space (X, ρ) is said to be lower orbitally complete (or lower
T -orbitally complete) iff every transversal sequence which is contained in O(x)
for some x ∈ X converges in X.

A function f mapping X into the reals is T -orbitally upper semi-
continuous at p ∈ X iff {xn}n∈N is a sequence in O(x) and xn → p (n→∞)
implies that f(p) ≥ lim sup f(xn).

Let (X, ρ) be a lower edges transversal space. A mapping T : X → X is
said to be lower edges contraction if there exists an 0 ≤ λ < 1 such that

ρ[T (x), T (y)] ≥ λρ[x, y] + b(1− λ)(Le)

for all points x, y ∈ X. For further facts on the lower edges contraction see:
Tasković [7].
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Theorem 3.3. (Method of successive approximations). Let T be a map-
ping of a lower edges transversal space (X, ρ) into itself and let X be lower
complete with an increasing bisection function d satisfying d(t, t) ≥ t. If T is
a lower edges contraction, then:

(i) There exists one and only one ξ ∈ X such that T (ξ) = ξ.
(ii) For any x0 ∈ X, the sequence of points

x1 = T (x0), x2 = T (x1), x3 = T (x2), . . .

tends to ξ ∈ X, and the following inequalities hold such that

ρ[xn, ξ] ≥ λnρ[x0, T (x0)] + b(1− λn)(Pr)

for every n ∈ N.

Proof. Let ξ, η ∈ X be such that ξ = Tξ and η = Tη. Then

ρ[ξ, η] = ρ[Tξ, Tη] ≥ λρ[ξ, η] + b(1− λ),

thus (1−λ)ρ[ξ, η] ≥ b(1−λ). Since 1−λ > 0 we infer that ρ[ξ, η] ≥ b, whence
ρ[ξ, η] = b and ξ = η.

Let x0 ∈ X. Set x1 = T (x0), x2 = T (x1), . . . ; we are going to prove
that {xn}n∈N tends to a limit ξ and T (ξ) = ξ. The statement will thus be
established. In this sense, we have

ρ[xn+1, xn] = ρ
[
T (xn), T (xn−1)

]
≥ λρ[xn, xn−1] + b(1− λ),

i.e., via the method of successive approximations, we obtain the following
inequality

ρ[xn+1, xn] ≥ λnρ[x1, x0] + b(1− λn);

and thus, one deduces that if m and n are integers ≥ 0, then

ρ[xn, xm] ≥ min
{
ρ[xn, xn+1], . . . , ρ[xm−1, xm]

}
≥

≥ min
{
λnρ[x1, x0] + b(1− λn), . . . , λm−1ρ[x1, x0] + b(1− λm−1)

}
=

= λnρ[x1, x0] + b(1− λn),

(5)

i.e., ρ[xn, xm] → b (n → ∞). This implies, by lower completeness, that the
transversal sequence {T n(x0)}n∈N converges, i.e., there is a ξ ∈ X such that
T n(x0)→ ξ (n→∞). On the other hand, we have

ρ[xn+1, T (ξ)] = ρ
[
T (xn), T (ξ)

]
≥ λρ[xn, ξ] + b(1− λ),

i.e., ρ[xn+1, T (ξ)]→ λb+ b(1− λ) as n→∞ or which is equivalently xn+1 →
T (ξ) as n → ∞, i.e., from the preceding facts ξ = T (ξ) and from (5) as
m→∞ we obtain the inequality (Pr). The proof is complete.
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A brief proof of this statement may be found in Tasković [7].
Let (X, ρX) and (Y, ρY ) be two lower edges transversal spaces and let

T : X → Y .
In order, we notice from Tasković [7], that T be lower edges con-

tinuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such that the
relation

ρX [x0, x] > b− δ implies ρY [T (x0), T (x)] > b− ε.
A typical first example of a lower edges continuous mapping is the lower

edges contraction on the lower edges transversal space (X, ρ). For the further
facts on the lower edges continuous mappings see: Tasković [7].

Theorem 3.4. Let T be a mapping of a lower edges transversal space
(X, ρ) into itself and let X be lower T -orbitally complete. Suppose that there
exists a function ϕ : [a, b]→ [a, b] satisfying(

∀t ∈ [a, b)
)(
ϕ(t) > t and lim inf

z→t−0
ϕ(z) > t

)
(Il)

such that

ρ[Tx, Ty] ≥ ϕ
(

diam
{
x, y, Tx, Ty, T 2x, T 2y, . . .

})
(D)

for all x, y ∈ X. If x �→ diam O(x) or x �→ ρ[x, Tx] is T -orbitally upper semi-
continuous, then T has a unique fixed point ξ ∈ X and {T n(x)}n∈N converges
to ξ for every x ∈ X.

A brief proof of this statement may be found in: Tasković [7] with
application of the following context.

Lemma 2. (Tasković [7]). Let the mapping ϕ : [a, b] → [a, b] ⊂ R0
+ for

a < b have the property (Il). If the sequence (xn) of nonnegative real numbers
satisfies the condition

xn+1 ≥ ϕ(xn), n ∈ N,

then the sequence (xn) tends to b. The velocity of this convergence is not
nesessarily geometrical.

A brief first proof of this statement may be found in: Tasković [7]. We
notice that Lemma 2 is a dually form of Lemma 1.

As immediate consequences of the preceding Theorem 4 we obtain di-
rectly the following interesting cases of (D):

(6) There exists a nondecreasing function ϕ : [a, b] → [a, b] ⊂ R0
+ for

a < b satisfying lim infz→t−0 ϕ(z) > t for every t ∈ [a, b) such that

ρ[Tx, Ty] ≥ ϕ
(

diam{x, y, Tx, Ty}
)
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for all x, y ∈ X.
(7) (Special affine case of condition (D) for ϕ(t) = αt+ b(1−α)). There

exists a constant α ∈ [0, 1) such that for all x, y ∈ X the following inequality
holds

ρ[Tx, Ty] ≥ αdiam
{
x, y, Tx, Ty

}
+ b(1− α),

i.e., equivalently to

ρ[Tx, Ty] ≥

≥ αmin
{
ρ[x, y], ρ[x, Tx], ρ[y, Ty], ρ[x, Ty], ρ[y, Tx]

}
+ b(1− α).

(8) There exists a nondecreasing function ϕ : [a, b] → [a, b] ⊂ R0
+ for

a < b satisfying lim infz→t−0 ϕ(z) > t for every t ∈ [a, b) such that

ρ[Tx, Ty] ≥ ϕ
(

diam
{
x, y, Tx, Ty, . . . , T kx, T ky

})
for an arbitrary fixed integer k ≥ 0 and for all x, y ∈ X.

(9) There exists an increasing mapping f : [a, b]5 → [a, b] ⊂ R0
+ for

a < b satisfying lim infz→t−0 f(z, z, z, z, z) > t for every t ∈ [a, b) such that

ρ[Tx, Ty] ≥ f
(
ρ[x, y], ρ[x, Tx], ρ[y, Ty], ρ[x, Ty], ρ[y, Tx]

)
for all x, y ∈ X.

In connection with the preceding facts, we are now in a position to
formulate a localization of Theorem 4 in the following form.

Theorem 3.5. Let T be a mapping of a lower edges transversal space
(X, ρ) into itself and let X be lower T -orbitally complete. Suppose that there
exists a function ϕ : [a, b]→ [a, b] satisfying (Il) such that

diam
{
Tx, T 2x, . . .

}
≥ ϕ

(
diam

{
x, Tx, T 2x, . . .

})
for every x ∈ X. If x �→ diam O(x) or x �→ ρ[x, Tx] is T -orbitally upper
semicontinuous, then T has a fixed point.

Proof of this statement is a totally analogous with the proof of Theorem
4, and thus we omit it.
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